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Dynamics of two interacting particles in classical billiards
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The problem of two interacting particles moving in ad-dimensional billiard is considered here. A suitable
coordinate transformation leads to the problem of a particle in an unconventional hyperbilliard. A dynamical
map can be readily constructed for this general system, which greatly simplifies calculations. As a particular
example, we consider two identical particles interacting through a screened Coulomb potential in a one-
dimensional billiard. We find that the screening plays an important role in the dynamical behavior of the
system and only in the limit of vanishing screening length can the particles be considered as bouncing balls.
For more general screening and energy values, the system presents strong nonintegrability with resonant
islands of stability.@S1063-651X~97!51006-3#

PACS number~s!: 05.45.1b
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A system of two interacting bodies moving in an othe
wise free space is one of the few integrable problems kno
The reduction to the one-body central force problem allow
solution by quadratures@1#. However, once the translationa
symmetries are broken, as when the system is placed ins
billiard, the center-of-mass~c.m.! and angular momenta ar
in general no longer constants of motion. In this case,
classical dynamics of the system may be chaotic even w
the geometry yields an otherwise fully integrable on
particle case, as we shall see below.

On the other hand, recent experimental realizations of
liards, such as suitably shaped resonators and quantum
@2,3#, have allowed the study of the quantum manifestatio
of well-known classical nonintegrability in some billiard
@4,5#. In the case of quantum dots, disagreement betw
theory and experiment has been attributed to geomet
factors@3#. A considerable amount of theoretical work exis
on the effect that geometry has on the integrability of d
namics in billiards@4,6–8#, as well as on their quantum ana
logs @5,9#. However, the possibility of more than one partic
in the quantum dot leaves the usual one-particle appro
incomplete. In fact, some experiments have pointed out
importance of electron-electron interactions on various f
tures observed in such mesoscopic systems@10#. In this ar-
ticle, we explore the role of the electrostatic interaction
troduced when two particles are in the billiard. A formalis
for billiards in any dimensions is developed, and as an
ample, we apply it to the one-dimensional~1D! case. Since
we are interested in the role of the electrostatic interactio
mesoscopic systems, we consider particles interac
through a screened Coulomb potential.

The hyperbilliard. The problem of two point masses mo
ing along a finite line and suffering elastic impacts with t
end walls and between themselves can be transformed t
motion of one ‘‘particle’’ moving in a triangular billiard.
The coordinates of theparticle in this billiard are the coor-
dinates of the original masses. The ratio of the masses d
mines the integrability of the system@6#, being regularizable
for a particle mass ratio of 1 and 3~or 1

3! @7#.
We now introduce an interaction between the partic

and consider thed-dimensional case. Letqi ,pi ( i51,2) be
551063-651X/97/55~6!/6319~4!/$10.00
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the position and linear momentum of thei th particle. The
motion takes place in ad-dimensional billiard, a compac
simply connected region ofRd whose boundary is denote
by G. We assume thatG is piecewise smooth and defined b
n surfaces,G j5$q: f j (q,a j )50%, j51, . . . ,n, wheref j and
a j denote the function and the set of constants which ch
acterize thej th surface. These functions define subspace
dimensiond21 in Rd. To fix ideas, we restrict ourselves t
flat surfaces; i.e., ford52 ~3! the billiards are simple poly-
gons~polyhedrons!.

The formalism developed here can be applied to a
central-force interaction between the particles. We have
lected the screened Coulomb potential, i.e., the Yukawa
tential given byV(q1 ,q2)5e2luq22q1u/uq22q1u, wherel21

is the screening length. Notice that this potential goes t
d function whenl→`. In this limit, the particles behave a
bouncing hard-core balls, i.e., noninteracting impenetra
point particles, for which the dynamics can be integrable,
described above. Hence, for a given energy,l plays the role
of the perturbation parameter. Due to the interaction, a fin
value ofl determines the finite effective radius of the pa
ticles for a given total energy, as described below.

Considering for simplicity identical-mass particle
(m15m251), the Hamiltonian for the system is written a

H5
p1
2

2
1
p2
2

2
1V~q1 ,q2!1(

i51

2

(
j51

n

U„f j~qi ,a j !…, ~1!

where the functionU„f j (qi ,a j )… represents the infinite re
pulsion potential exerted by thej th hard wall on thei th
particle. Analytically, this function could be written in term
of Heaviside functions with a large prefactor. In practice, t
normal component of the velocity of the incident partic
will be reversed at the moment of bouncing on the billia
walls.

The Hamilton equations can be written asq̇i5pi and
ṗi52“qi

V(q1 ,q2)1( j51
n A j (pi)d„f j (qi ,a j )…,where i51,2

and the vector functionA j represents the change of mome
R6319 © 1997 The American Physical Society
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tum due to the bounce on thej th wall. Givend, the number
of degrees of freedom is 2d. Hence, the phase space of t
system is 4d dimensional.

We now introduce a transformation to center-of-mass
relative coordinatesR5(q11q2)/M andr5q22q1, respec-
tively, where the total massM52 and the reduced mas
m5 1

2. These equations define a new space of coordin
r5(r,R), which is 2d dimensional. In this space, we have
new set of equations for the boundary of the billiard, s
F j (r,a j ), j51, . . . ,n. Every functionF j now defines a sub
space of 2d21 dimensions inr space.

The Hamilton equations are transformed then toṙ5p/m,
Ṙ5P/M , and

ṗ52¹ rV~r !1(
j51

n

A j~p,P!d„F j~r,R,a j !…,

Ṗ5(
j51

n

Bj~p,P!d„F j~r,R,a j !…. ~2!

As before,A j andBj represent the change of the momentap
andP, respectively, due to the bounce on thej th wall.

Notice that these equations describe the motion ofone
particle in the r hyperspace; i.e., we have constructed
hyperbilliard. The description of a system composed by
few masses in terms of oneparticle in a hyperspace has bee
used for several cases, including billiards@6,7,12#. Usually,
the hyperspace is constructed without introducing trans
mations of the coordinates. Here, however, the change to
c.m. coordinates allows one to get a map in a simple wa

Notice that bounces of theparticle in the hyperbilliard
correspond to bounces of the masses in the real billiard.
walls of the billiard cause the breaking of the translatio
symmetry of the system, and as a consequence, the c.m
mentum is no longer a constant of motion. In the case
noninteracting and equal-mass particles, the changes in
c.m. momentum are determined only by the geometry of
billiard. In our case, however, the interaction couples
c.m. and relative momenta after a bounce, which in t
depend on the momenta of each of the original masses.
rotational symmetry is also broken in general and the g
erator of rotations is no longer a constant of motion eithe

The map. Hamilton equations inr space indicate thatbe-
tweenbounces theparticle moves freely along the c.m. co
ordinate whereas the central forceV(r ) acts only alongr .
The motions are independent, and only become correlate
each bounce, as the corresponding momenta are cha
while keeping the total energyE constant. We take advan
tage of this fact: Consider that theparticle at thenth bounce
has the coordinatern5(rn ,Rn). The condition that the time
spent by theparticle until the next bounce atrn11 on the
j th wall be the same along ther andR coordinates,

t r~rn ,rn11!5tRk~rn ,rn11!, k51, . . . ,d, ~3!

represents an interesting opportunity. Here,t r (tRk) refers to

the time along the relative (k component of c.m.! coordinate.
The timestRk for the free motion between collisions can b
calculated easily. The left-hand-side~LHS! in Eq. ~3! can be
obtained by noting that the motion alongr becomes sepa
d
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rable between bounces and the timet r can then be calculated
by quadratures, as illustrated below. Equation~3! and the
equation corresponding toF j result in a set of nonlinear al
gebraic equations forrn11. We call this set themapof the
billiard since it indeed expressesrn11 in terms ofrn . The
momenta are changed and the next bounce can be d
mined. This iterative procedure can be easily carried ou
least formally in the general case. Notice that this map
not been obtained by means of the usual linearization pro
dure @11#, but rather as an extension of Benettin and Str
cyn’s procedure@13#. The 1D case, explained in detail now
provides a clear example of this procedure.

The 1D billiard. This system is defined by walls at tw
(n52) end pointsq56 1

2 . Because of the interparticle re
pulsion, the particle 1~2! never reaches the boundary 2~1!.
This implies thatf 1(q1)5q11

1
2 and f 2(q2)5q22

1
2. More-

over,Aj , here associated with bounceson the j th wall, will
describe bounces of thej th particle only. The Hamilton
equations for the r2R coordinates are thenp5m ṙ ,
P5MṘ, and

ṗ52
dV~r !

dr
1A1dSR2

r

2
1
1

2D1A2dSR1
r

2
2
1

2D ,
Ṗ5B1dSR2

r

2
1
1

2D1B2dSR1
r

2
2
1

2D . ~4!

According to the arguments of thed functions, the point
boundaries are transformed into lines inr space
(F15R2 r /21 1

2, F25R1r /22 1
2), which define a billiard

with an isosceles-triangle shape, similar to the case
noninteracting hard-core particles@6#, although here the bil-
liard is in ther -R space. The base of this triangle in our ca
acts as a repulsive wall of potentialV(r ). The motion inside
this billiard can be determined as follows.

After the bounce on (r n ,Rn), theparticle describes a tra-
jectory, in general towards the base, under the action of
potential. The closest approach to the repulsive base~the
turning point! depends on the energy associated with
relative motion for that trajectory,e5E2P2/2M . The par-
ticle will then move away from the base, until the ne
bounce takes place at (r n11 ,Rn11), this latter one satisfying
any of the linesFi , i.e., at the intersection of the trajector
and the boundary of the hyperbilliard. Then, the mome
are changed and the procedure is repeated iteratively.
functions giving the change of momentum are simple. F
example, for bounces of thei th particle~on thei th wall! we
haveAi52p62mP/M , whereP and p are the momenta
immediatelybeforethe collision, and the1~2! sign refers to
i51 ~2!.

For a pure Coulomb potential (l50), t r can be calcu-
lated analytically, and so Eq.~3! can be written in the form

t$Te~r n!,Te~r n11!%5URn112Rn

P/M U, ~5!

wheret is the time elapsed going fromr n to r n11, expressed
in terms of the timeT spent by the particle from the turnin
point to r ,
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Te~r !5
rp

2e
1S m

2e3D
1/2

cosh21~r e!1/2. ~6!

For l<1 we can expandV(r ) to first order and obtain the
same expression forT, except thatE is shifted toE2l. For
all different initial conditions there are only a few possib
trajectories~the particle bounces either on the same or d
ferent wall, and reaches or not the turning point!, which can
be determined by analyzing the momenta. A simple al
rithm can then be obtained to solve Eq.~5! for r n11 and
determine the Poincare´ surfaces of section@e.g., when the
particle reaches the turning point,t5Te(r n)1Te(r n11)#.
This nontrivial algebraic map provides a full description
the dynamics. Its use simplifies calculations a great deal
allows one to better characterize the system, as we des
below.

To characterize the dynamics, we determine the Poinc´
section~PS! at a phase such that one of the masses is fix
say, as it just bounces on the wall. Then we plot the posi
and momentum of the other mass. Because of the indis
guishability of the particles, the topology of the PS does
depend on which mass is selected. In fact, the surfaces
identical, except for left-right exchange symmetry.

Between bounces on the walls, the masses approach
other a distance given by their relative energy. The shor
distance of approach,rm , can be considered as twice th
minimum effective radius of the particles~for zero c.m. en-
ergy!. This effective radius is a characteristic of the syst
and its dependence on the total energyE and the inverse
screening lengthl is shown in Fig. 1, as obtained from th
condition E5V(rm). When l@1, the interaction is shor
ranged, which results in nearly free particles for some m
ments. Note that for all values ofE andl, the initial condi-
tion q1

(0)521
2, q2

(0)5 1
2, p1

(0)5@E2V(1)#1/2, p2
(0)52p1

(0)

corresponds to a periodic orbit and we call it thesymmetric
motion.

We now fixE51.56 and changel. Figure 2~a! shows the
PS for the ‘‘short-range potential’’ casel520. These results
were obtained by direct numerical integration of the eq
tions of motion. Hereq152 1

2, which means that we ar
plotting the position and momentum of the particle 2 as p
ticle 1 is at its~left! edge of the billiard. According to the

FIG. 1. The closest approach between the particles,rm , as a
function of the inverse screening lengthl, for different energies
E.
-
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Kolmogorov-Arnold-Moser theorem@1#, some invariant tori
will be preserved under the interaction, although they
somewhat deformed. These periodic or quasiperiodic or
lie inside theprimary islands of stability, which in our case
are situated around the fixed point corresponding to the s
metric motion, the latter one represented by means of3.
Higher values ofl present a similar PS, but the chaot
region fills more and more of the available space consis
with E fixed. It is clear that only for the case of point pa
ticles, i.e., zero screening length (1/l50), is the bouncing-
ball behavior observed. It is also possible that the infini
energy limit ~with rm50) would be similar, as Fig. 1 also
suggests.

Secondary islands appear forl'1. These islands are du
to the interparticle interaction@11# and correspond to corre
lated motion, as when, for example, particle 1 bounces tw
and the other once. For each pair of values (l, E) there is a
specific island structure. The orbits in the secondary isla
become unstable for the ‘‘short-range’’ case because
some instants the particles are nearly free, the memory of
previous motion is lost, and the correlation is destroy
Hence, asl decreases@Fig. 2~b!#, the number of stability
islands increases. In this caseq25

1
2, so that the PS shows th

FIG. 2. Poincare´ sections forE51.56.~a! q152
1
2, l520, and

~b! q25
1
2, l50.6. Crosses (3) indicate the symmetric periodic

motion.
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FIG. 3. Poincare´ sections for
the selected energyE51.56,l50
and q152

1
2. ~a! Solving the

Hamilton equations and~b! using
themap.
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position and momentum of particle 1 when particle 2 is at
right edge of the billiard. Notice that the available region
space decreases for smallerl, as the total energy is fixed an
the interparticle potential energy has a stronger confin
effect.

The results using themap described before are now pre
sented. Figure 3 shows the PS forl50 obtained by solving
~a! the differential Hamilton equations inq space and~b! the
algebraic equation~5!. The graph obtained by means of th
latter has been reflected aboutq25

1
2 for easy comparison

The twol50 PS’s are topologically identical~if traversed in
different sequences!. The agreement is excellent even f
l'1, while the computation time is substantially reduc
(;103 times! if the map is used.

Using the map, we have calculated the Lyapunov ex
nents for l<1, following the procedure of Ref.@13#. Fig-
ure 2 shows that, asl increases, the fraction of phase spa
filled by the chaotic sea increases also. This is reflected in
Lyapunov exponent~not shown!, which for a constant en
ergy (E51.56) increases monotonically~from 0.34 to 0.59!
cs
e
f

g

-

e
he

with the inverse screening lengthl ~from 0 to 1!. Increasing
energy produces similar curves with ever larger values os.

A general formalism for two interacting particles in
d-dimensional billiard has been presented. The o
dimensional case with a screened Coulomb potential
shown to exhibitsoft chaos. Only in the case of infinite
screening length~or energy! can the particles be considere
as bouncing balls. These results suggest that the effec
the electrostatic interaction between electrons in quan
dots, for example, may play a very important role in t
quantum-classical correspondence and they should be
sidered when these systems are studied. An analysis o
quantum-mechanical analog of the billiard system descri
in this work is now in progress.
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