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Dynamics of two interacting particles in classical billiards

Lilia Meza-Montes+? and Sergio E. Ulloa
1Department of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio University,
Athens, Ohio 45701-2979
2Instituto de Fsica UAP, Apdo. Postal J-48, Puebla, Puebla 72570xikte
(Received 10 March 1997

The problem of two interacting particles moving irdadimensional billiard is considered here. A suitable
coordinate transformation leads to the problem of a particle in an unconventional hyperbilliard. A dynamical
map can be readily constructed for this general system, which greatly simplifies calculations. As a particular
example, we consider two identical particles interacting through a screened Coulomb potential in a one-
dimensional billiard. We find that the screening plays an important role in the dynamical behavior of the
system and only in the limit of vanishing screening length can the particles be considered as bouncing balls.
For more general screening and energy values, the system presents strong nonintegrability with resonant
islands of stability][S1063-651X97)51006-3

PACS numbe(s): 05.45+b

A system of two interacting bodies moving in an other-the position and linear momentum of tléh particle. The
wise free space is one of the few integrable problems knowrmmotion takes place in a-dimensional billiard, a compact
The reduction to the one-body central force problem allows &imply connected region di® whose boundary is denoted
solution by quadrature/d]. However, once the translational by I'. We assume thdt is piecewise smooth and defined by
symmetries are broken, as when the system is placed insidevasurfaces]';={q:f;(q,«;)=0}, j=1,...», wheref; and
billiard, the center-of-mas&.m.) and angular momenta are «; denote the function and the set of constants which char-
in general no longer constants of motion. In this case, thecterize thgth surface. These functions define subspaces of
classical dynamics of the system may be chaotic even whedimensiond—1 in RY. To fix ideas, we restrict ourselves to
the geometry yields an otherwise fully integrable one-flat surfaces; i.e., fod=2 (3) the billiards are simple poly-
particle case, as we shall see below. gons(polyhedrong

On the other hand, recent experimental realizations of bil- The formalism developed here can be applied to any
liards, such as suitably shaped resonators and quantum datentral-force interaction between the particles. We have se-
[2,3], have allowed the study of the quantum manifestationdected the screened Coulomb potential, i.e., the Yukawa po-
of well-known classical nonintegrability in some billiards tential given byV(q;,q,) =e 92~ %l/|q,—q,|, wherex 1
[4,5]. In the case of quantum dots, disagreement betweeis the screening length. Notice that this potential goes to a
theory and experiment has been attributed to geometricaf function when\x —oo. In this limit, the particles behave as
factors[3]. A considerable amount of theoretical work exists bouncing hard-core balls, i.e., noninteracting impenetrable
on the effect that geometry has on the integrability of dy-point particles, for which the dynamics can be integrable, as
namics in billiard§4,6—8, as well as on their quantum ana- described above. Hence, for a given eneigyplays the role
logs[5,9]. However, the possibility of more than one particle of the perturbation parameter. Due to the interaction, a finite
in the quantum dot leaves the usual one-particle approactalue of A determines the finite effective radius of the par-
incomplete. In fact, some experiments have pointed out thécles for a given total energy, as described below.
importance of electron-electron interactions on various fea- Considering for simplicity identical-mass patrticles
tures observed in such mesoscopic systgb®. In this ar- (m;=m,=1), the Hamiltonian for the system is written as
ticle, we explore the role of the electrostatic interaction in-
troduced when two particles are in the billiard. A formalism
for billiards in any dimensions is developed, and as an ex- p? p3 2
ample, we apply it to the one-dimensiorfdD) case. Since H=>+ 7+V(Q1,QZ)+__21 21 U(fi(di, ), (D
we are interested in the role of the electrostatic interaction in T
mesoscopic systems, we consider particles interacting
through a screened Coulomb potential.

The hyperbilliard The problem of two point masses mov-
ing along a finite line and suffering elastic impacts with the
end walls and between themselves can be transformed to t
motion of one ‘particle” moving in a triangular billiard.
The coordinates of thparticle in this billiard are the coor-
dinates of the original masses. The ratio of the masses detej:, |5
mines the integrability of the systel], being regularizable . . . .
for a particle mass ratio of 1 and(®r 2) [7]. ' The Hamilton equations can be written gs=p; and

We now introduce an interaction between the particledi= — Vg V(d1,0d2) + Zj_1A;(pi) 8(f;(ai, @j)), wherei=1,2
and consider thel-dimensional case. Lef;,p; (i=1,2) be and the vector functiod; represents the change of momen-

14

where the functiord (f;(q;,a;)) represents the infinite re-
pulsion potential exerted by thgh hard wall on theith
article. Analytically, this function could be written in terms
f Heaviside functions with a large prefactor. In practice, the
normal component of the velocity of the incident particle
will be reversed at the moment of bouncing on the billiard
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tum due to the bounce on théh wall. Givend, the number rable between bounces and the timean then be calculated
of degrees of freedom isd2 Hence, the phase space of the by quadratures, as illustrated below. Equati@ and the
system is 41 dimensional. equation corresponding t; result in a set of nonlinear al-
We now introduce a transformation to center-of-mass andebraic equations fop,, ;. We call this set thenap of the
relative coordinate®=(qg;+0,)/M andr=q,—q4, respec- billiard since it indeed expresses ,, in terms ofp,. The
tively, where the total masM =2 and the reduced mass momenta are changed and the next bounce can be deter-
u=3. These equations define a new space of coordinatemined. This iterative procedure can be easily carried out at
p=(r,R), which is 2 dimensional. In this space, we have a least formally in the general case. Notice that this map has
new set of equations for the boundary of the billiard, saynot been obtained by means of the usual linearization proce-
Fi(p,aj), j=1,... v. Every functionF; now defines a sub- dure[11], but rather as an extension of Benettin and Strel-
space of d—1 dimensions irp space. cyn’s procedurg¢13]. The 1D case, explained in detail now,
The Hamilton equations are transformed them 4op/y, ~ Provides a clear example of this procedure.
R=P/M. and The 1D b||||§1rd This system is defined by Walls_at two
' (v=2) end pointsg=+ 3 . Because of the interparticle re-
v pulsion, the particle 12) never reaches the boundary(D.
p=—V.V(r)+ > A/(p,P)S(F;(rR,q)), This implies thatf,(qg;)=q;+ 3 and f,(g,) =q,— 3. More-
=1 over,A;, here associated with bounces the jth wall, will
describe bounces of thgth particle only. The Hamilton

pP= 2 B,(p,P)8(F;(r,R,a))). 2) equati_ons for ther—R coordinates are therpz,u'r,
=1 P=MR, and

As before,A; andB; represent the change of the momepta av(r) — —
andP, respectively, due to the bounce on ftik wall. p=— +A16( R— —+ _) +A8| R+ = — _) ,

Notice that these equations describe the motioromé dr 2 2 2 2
particle in the p hyperspace; i.e., we have constructed the
hyperbilliard. The description of a system composed by a . r r 1
few masses in terms of orparticle in a hyperspace has been P= 315( R-5+ E) +B2d| R+ 5 — E) - 4

used for several cases, including billiafds7,13. Usually,

the hyperspace is constructed without introducing tranSforAccording to the arguments of thé functions, the point

mations of the coordinates. Here, however, the change to trl?oundaries are transformed into  lines ,ip space

c.m. coordinates allows one to get a map in a simple way. (F,=R— /241, F,=R+r/2—1), which define a billiard
Notice that bounces of thparticle in the hyperbilliard 1 2 2 2

correspond to bounces of the masses in the real billiard. ThvevIth an isosceles-triangle shape, similar to the case of

walls of the billiard cause the breaking of the translationalnonmteracung hard-core particigg], aithough here the bil-

symmetry of the system, and as a consequence, the c.m. mlba-lrd is in ther-R space. The base of this triangle in our case

mentum is no longer a constant of motion. In the case o Citsgﬁ'i aréepu:‘sg/e gvillr?;iﬁozjennﬁ(rl?';he motion inside
noninteracting and equal-mass particles, the changes in t QS ard can be dete €d as Tollows.

c.m. momentum are determined only by the geometry of the Alter .the bounce onrb,,Ry), the particle descrlbes_a tra-
billiard. In our case, however, the interaction couples thd®ctory, in general towards the base, under the action of the

c.m. and relative momenta after a bounce, which in tur oteptial. The closest approach to the repu!sive ti&:!w
depend on the momenta of each of the original masses. T grning pom_j depends on the energy a25500|ated with the
rotational symmetry is also broken in general and the genggllatlvgnnlﬁtlon for that traje;:toryetzhE—bP f2Mm. Ilh?hpar' t
erator of rotations is no longer a constant of motion either. icle wi en move away from e base, until the nex
The map Hamilton equations ip space indicate thdie- bounce takes place at{.1,Ry.1), this latter one satisfying

tweenbounces thearticle moves freely along the c.m. co- any of the linesk;, i.e., at the int¢r§ection of the trajectory
ordinate whereas the central foregr) acts only along . and the boundary of the hyperb|l.l|ard. Then, .the momenta
The motions are independent, and only become correlated € c_hange_d_ and the procedure is repeated |ter_at|vely. The
each bounce, as the corresponding momenta are chang ctions giving the change of mlomentum are simple. For
while keeping the total energly constant. We take advan- example, for bounces of ttiéh particle(on theith wall) we

tage of this fact: Consider that tiparticle at thenth bounce ~ "aveAi=—p*2uP/M, whereP andp are the momenta
has the coordinate,=(r,,,R,). The condition that the time immediatelybeforethe collision, and the-(—) sign refers to

: ! i=1(2.
spent by theparticle until the next bounce ap,,; on the .
jth wall be the same along threand R coordinates, ol pure Coulomb potentiah(=0), 7y can be calcu-
lated analytically, and so E@3) can be written in the form

Tr(PnaPn+1):TRk(Pn7Pn+1)a k=1,...d, ©)
_ Rn+1—Rq
represents an interesting opportunity. Herre(TRk) refers to HTe(Mn), TelTnsa)}= P/M
the time along the relativek(component of c.m.coordinate.
The timeSTRk for the free motion between collisions can be wherer is the time elapsed going from, tor ., ;, expressed
calculated easily. The left-hand-sifleHS) in Eqg. (3) can be in terms of the timeT spent by the particle from the turning
obtained by noting that the motion alomgbecomes sepa- pointtor,

: ®)
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FIG. 1. The closest approach between the partialgs, as a -05 -03 -01 01 0.3 0.5
function of the inverse screening lengkh for different energies q
E. 2

rp

Ts<r>=z+(i

1/2
253) cosh X(re)*2. (6)

b)

For A<1 we can expand/(r) to first order and obtain the
same expression far, except thak is shifted toE—\. For
all different initial conditions there are only a few possible p1
trajectories(the particle bounces either on the same or dif-
ferent wall, and reaches or not the turning ppimthich can
be determined by analyzing the momenta. A simple algo-
rithm can then be obtained to solve BE&) for r,,.; and
determine the Poincarsurfaces of sectiofie.g., when the
particle reaches the turning point=T.(r,)+T.(r,:1)]
This nontrivial algebraic map provides a full description of
the dynamics. Its use simplifies calculations a great deal and
allows one to better characterize the system, as we describe
below.

To characterize the dynamics, we determine the Poincare FIG. 2. Poincaireections forE=1.56.(a) q;= — 3, A =20, and
section(P9 at a phase such that one of the masses is fixedP) d2=2, A=0.6. Crosses X) indicate the symmetric periodic
say, as it just bounces on the wall. Then we plot the positioffnotion.

and momentum of the other mass. Because of the indistirg o|mogorov-Arnold-Moser theorerfl], some invariant tori
guishability of the particles, the topology of the PS does nolyjj| pe preserved under the interaction, although they are
depend on which mass is selected. In fact, the surfaces akmewhat deformed. These periodic or quasiperiodic orbits
identical, except for left-right exchange symmetry. lie inside theprimary islands of stabilitywhich in our case

Between bounces on the walls, the masses approach eagfe situated around the fixed point corresponding to the sym-
other a distance given by their relative energy. The shorteshetric motion, the latter one represented by means<of
distance of approach,,, can be considered as twice the Higher values of\ present a similar PS, but the chaotic
minimum effective radius of the particléfor zero c.m. en-  region fills more and more of the available space consistent
ergy). This effective radius is a characteristic of the systemwith E fixed. It is clear that only for the case of point par-
and its dependence on the total enefgyand the inverse ticles, i.e., zero screening length X*#0), is the bouncing-
screening length is shown in Fig. 1, as obtained from the ball behavior observed. It is also possible that the infinite-
condition E=V(r,). When A>1, the interaction is short energy limit (with r,,=0) would be similar, as Fig. 1 also
ranged, which results in nearly free particles for some mosuggests.

03 05

ments. Note that for all values & and\, the initial condi- Secondary islands appear for=1. These islands are due
tion q¥=-1, qP=1 pP=[E-Vv(1)1*2 p=-p?  to the interparticle interactiofl1] and correspond to corre-
corresponds to a periodic orbit and we call it $yenmetric  lated motion, as when, for example, particle 1 bounces twice
motion. and the other once. For each pair of valugsk) there is a

We now fixE=1.56 and changk. Figure Za) shows the specific island structure. The orbits in the secondary islands
PS for the “short-range potential” case=20. These results become unstable for the “short-range” case because for
were obtained by direct numerical integration of the equasome instants the particles are nearly free, the memory of the
tions of motion. Hereq,=— 3, which means that we are previous motion is lost, and the correlation is destroyed.
plotting the position and momentum of the particle 2 as parHence, as\ decrease$Fig. 2(b)], the number of stability
ticle 1 is at its(left) edge of the billiard. According to the islands increases. In this cagg= 3, so that the PS shows the
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FIG. 3. Poincaresections for

P or : the selected energg=1.56,A=0
and q;=—3. (a Solving the
Hamilton equations an¢b) using
-1r 1 the map
0.1 0.1

position and momentum of particle 1 when particle 2 is at thewith the inverse screening lengkh(from 0 to ). Increasing
right edge of the billiard. Notice that the available region of energy produces similar curves with ever larger values.of
space decreases for smalleras the total energy is fixed and A general formalism for two interacting particles in a
the interparticle potential energy has a stronger confiningj-dimensional billiard has been presented. The one-
effect. dimensional case with a screened Coulomb potential was

The results using thenap described before are now pre- shown to exhibitsoft chaos Only in the case of infinite
sented. Figure 3 shows the PS for 0 obtained by solving  screening lengttior energy can the particles be considered
(a) the differential Hamilton equations mspace andb) the  as bouncing balls. These results suggest that the effects of
algebraic equation5). The graph obtained by means of the the electrostatic interaction between electrons in quantum
latter has been reflected aboyt=3 for easy comparison. dots, for example, may play a very important role in the
The two\ =0 PS’s are topologically identic&f traversed in  quantum-classical correspondence and they should be con-
different sequences The agreement is excellent even for sidered when these systems are studied. An analysis of the
A~1, while the computation time is substantially reducedquantum-mechanical analog of the billiard system described
(~10° times if the map is used. in this work is now in progress.

Using the map, we have calculated the Lyapunov expo-

nento for A<1, following the procedure of Ref13]. Fig-

ure 2 shows that, as increases, the fraction of phase space We thank G. Luna for valuable suggestions. Partial finan-
filled by the chaotic sea increases also. This is reflected in theial support by CONACyYT, Meico and U.S. DOE Grant
Lyapunov exponentnot shown, which for a constant en- No. DE-F02-91ER45334 is acknowledged. S.E.U. acknowl-
ergy (E=1.56) increases monotonicalffrom 0.34 to 0.59  edges support of the A. v. Humboldt Foundation.
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